首页> 外文OA文献 >Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity
【2h】

Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

机译:用分段线性估计求解逆问题:来自高斯分布   混合模型与结构稀疏性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A general framework for solving image inverse problems is introduced in thispaper. The approach is based on Gaussian mixture models, estimated via acomputationally efficient MAP-EM algorithm. A dual mathematical interpretationof the proposed framework with structured sparse estimation is described, whichshows that the resulting piecewise linear estimate stabilizes the estimationwhen compared to traditional sparse inverse problem techniques. Thisinterpretation also suggests an effective dictionary motivated initializationfor the MAP-EM algorithm. We demonstrate that in a number of image inverseproblems, including inpainting, zooming, and deblurring, the same algorithmproduces either equal, often significantly better, or very small margin worseresults than the best published ones, at a lower computational cost.
机译:介绍了一种解决图像逆问题的通用框架。该方法基于高斯混合模型,该模型是通过高效计算的MAP-EM算法估算的。描述了使用结构化稀疏估计对提出的框架进行的双重数学解释,这表明与传统的稀疏逆问题技术相比,所得的分段线性估计使估计稳定。这种解释还建议针对MAP-EM算法进行有效的字典驱动的初始化。我们证明,在许多图像反问题中,包括修复,缩放和去模糊,相同的算法以较低的计算成本产生的效果与最佳发布的效果相同,通常明显更好,或边缘误差很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号